Minggu, 02 Agustus 2020

Program Linear

Muhamad Rayyen Alfareza Bukhari
XI IPS 2
                                                                                                                                                             Program Linear
Program linear merupakan suatu program yang digunakan sebagai metode penentuan nilai optimum dari suatu persoalan linear. Nilai optimum (maksimal atau minimum) dapat diperoleh dari nilai dalam suatu himpunan penyelesaiaan persoalan linear. Di dalam persoalan linear tersebut terdapat fungsi linear yang bisa disebut sebagai fungsi objektif. Persyaratan, batasan, dan kendala dalam persoalan linear adalah merupakan sistem pertidaksamaan linear.

Model Matematika Program Linear
Persoalan dalam program linear yang masih dinyatakan dalam kalimat-kalimat pernyataan umum, kemudian diubah kedalam model matematika. Model matematika merupakan pernyataan yang menggunakan peubah dan notasi matematika.

Perhatikan tabel persoalan maksimum dan minimum dibawah berikut:



Sebagai contoh :
Sebuah produsen sepatu membuat 2 model sepatu menggunakan 2 bahan yang berbeda. Komposisi model yang pertama terdiri dari 200 gr bahan pertama dan bahan kedua 150 gr. Sedangkan komposisi model kedua tersebut terdiri dari 180 gr bahan pertama dan 170 gr bahan kedua. Persediaan di gudang bahan pertama 76 kg dan persediaan digudang untuk bahan kedua 64 kg. Harga model pertama ialah Rp. 500.000,00 dan untuk model kedua harganya Rp. 400.000,00.

Dengan peubah dari jumlah optimal model 1 adalah x dan model 2 adalah y, dan hasil penjualan optimal adalah f(x, y) = 500.000x + 400.000y. Dengan syarat:

  • Jumlah maksimal bahan 1 adalah 72.000 gr, maka 200x + 180y ≤ 72.000.
  • Jumlah maksimal bahan 2 adalah 64.000 gr, maka 150x + 170y ≤ 64.000
  • Masing-masing model harus terbuat.

Model matematika untuk mendapat jumlah penjualan yang maksimum adalah:

Maksimum f(x, y) = 500.000x + 400.000y

Syarat:

  • 200x + 180y ≤ 72.000
  • 150x + 170y ≤ 64.000
  • x ≥ 0
  • y ≥ 0
Nilai Optimum Fungsi Objektif
Fungsi objektif merupakan fungsi linear dan batasan-batasan pertidaksamaan linear yang memiliki himpunan penyelesaian. Himpunan penyelesaian yang ada merupakan titik-titik dalam diagram cartesius yang jika koordinatnya disubstitusikan kedalam fungsi linear dapat memenuhi persyaratan yang ditentukan.


Nilai optimum fungsi objektif dari suatu persoalan linear dapat ditentukan dengan metode grafik. Dengan melihat grafik dari fungsi objektif dan batasan-batasannya dapat ditentukan letak titik yang menjadi nilai optimum. Langkah-langkahnya sebagai berikut :

  • Menggambar himpunan penyelesaian dari semua batasan syarat yang ada di cartesius.
  • Menentukan titik-titik ekstrim yang merupakan perpotongan garis batasan dengan garis batasan yang lainnya. Titik-titik ekstrim tersebut merupakan himpunan penyelesaian dari batasannya dan memiliki kemungkinan besar membuat fungsi menjadi optimum.
  • Menyelidiki nilai optimum fungsi objektif dengan dua acara yaitu :
    • Menggunakan garis selidik
    • Membandingkan nilai fungsi objektif tiap titik ekstrim
1. Menggunakan Garis Selidik
Garis selidik dapat diperoleh dari fungsi objektif f(x, y) = ax + by yang mana garis selidiknya ialah:
ax + by = Z
Nilai Z diberikan sembarang nilai.
Garis ini dibuat setelah grafik himpunan penyelesaian pertidaksamaannya juga dibuat.
Garis selidik awal dibuat di area himpunan penyelesaian awal. Lalu kemudian dibuat garis-garis yang sejajar dengan garis selidik awal.
Berikut adalah pedoman untuk mempermudah penyelidikian nilai fungsi optimum:
Cara 1 (syarat a > 0), yaitu:
  • Apabila maksimum, maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di kiri garis tersebut. Titik yang dilalui garis tersebut ialah titik maksimum.
Apabila minimum, maka dibuatlah garis yang sejajar garis selidik awal sehingga akan membuat suatu himpunan penyelesaian berada di kanan garis tersebut.
Titik yang dilalui garis tersebut ialah titik minimum.
Perhatikan grafik dibawah:
garis selidik
Cara ke- 2 (syarat b > 0), yaitu:
  • Apabila maksimum: maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di bawah garis tersebut. Titik yang dilalui garis tersebut ialah titik maksimum.
  • Apabila minimum: maka dibuat garis yang sejajar garis selidik awal sehingga membuat himpunan penyelesaian berada di atas garis tersebut. Titik yang dilalui garis tersebut ialah titik minimum.
Perhatikanlah grafik dibawah berikut:
cara membuat garis selidik fungsi
Bagi nilai a < 0 dan b < 0 maka berlaku sebuah kebalikan dari kedua cara yang dijelaskan di atas.
2. Membandingkan Nilai Fungsi Tiap Titik Ekstrim

Menyelidiki nilai optimum dari fungsi objektif juga dapat dilakukan dengan terlebih dahulu menentukan titik-titik potong dari garis-garis batas yang ada. Titik-titip potong tersebut merupakan nilai ekstrim yang berpotensi memiliki nilai maksimum di salah satu titiknya.


Berdasarkan titik-titik tersebut ditentukan nilai masing-masing fungsinya, kemudian dibandingkan. Nilai terbesar merupakan nilai maksimum dan nilai terkecil merupakan nilai minimum.



Contoh Soal dan Pembahasan

1. Tentukanlah sebuah nilai minimum dari: f(x, y) = 9x + y pada daerah yang telah dibatasi oleh 2 ≤ x ≤ 6, dan 0 ≤ y ≤ 8 serta x + y ≤ 7.

  • Langkah 1 yaitu menggambar grafiknya terlebih dahulu:
contoh soal program linear
  • Langkah ke-2 menentukan titik-titik ekstrimnya:
Maka berdasarkan gambar diatas, ada 4 titik ekstrim, yaitu: A, B, C, D dan himpunan penyelesaiannya ada di area yang telah diarsir.
  • Langkah yang ke-3, yaitu menyelidiki nilai optimum:
Berdasarkan grafik diatas dapat diketahui titik A dan B mempunyai nilai y = 0, sehingga kemungkinan menjadi nilai minimum.
Kedua titik disubstitusikan kedalam f(x, y) = 9x + y untuk dibandingkan.
menyelidiki nilai optimum
Dengan membandingkan tersebut,maka bisa disimpulkan bahwa titik A memiliki nilai minimum 18.
2. Tentukanlah dimana nilai maksimum fungsi f(x, y) = 4x + 5y yang akan dicapai pada pada grafik ini!
pembahasan soal
Titik ekstrim pada gambar ialah:
  • A tidak mungkin maksimum karena titik A paling kiri.
  • B(3, 6)
  • C(8, 2)
  • D(8, 0)
Nilai tiap titik ekstrim ialah:
  • B(3, 6) \longrightarrow f(3, 6) = 4(3) + 5(6) = 42
  • C(8, 2) \longrightarrow f(8, 2) = 4(8) + 5(2) = 42
  • D(8, 0) \longrightarrow f(8, 0) = 4(8) + 5(0) = 32
Sehingga dapat diketahui hasilnya bahwa nilai maksimumnya berada pada titik yang melalui garis BC dengan nilai maksimum 42.
3. Pedagang buah memiliki modal Rp. 1.000.000,00 untuk membeli apel dan pisang untuk dijual kembali. Harga beli tiap kg apel Rp 4000,00 dan pisang Rp 1.600,00. Tempatnya hanya bisa menampung 400 kg buah. Tentukan jumlah apel dan pisang agar kapasitas maksimum.


Diketahui:

Dengan syarat:

Kapasitas tempat: x + y ≤ 400

Modal: 4.000x + 1.600y ≤ 1.000.000 < 5x + 2y ≤ 1.250

x ≥ 0

y ≥ 0

Titik ekstrim:

A(0, 400) bukan optimum karena tidak ada apel

C(250, 0) bukan optimum karena tidak ada pisang

B(xb,yb) dengan metode eliminasi 2 persamaan diatas diperoleh:

5x + 2y ≤ 1250

2x + 2y ≤ 800


3x  ≤  450 sehingga x = 150 dan y = 250

Sehingga jumlah masimum:

  • Apel: 150 kg
  • Pisang: 250 kg
Daftar pustaka :
https://www.studiobelajar.com/program-linear/
https://idschool.net/sma/contoh-soal-dan-pembahasan-program-linear-matematika-sma/
https://rumusbilangan.com/program-linier/


Tidak ada komentar:

Posting Komentar